Search results for " Polyoxometalate"

showing 10 items of 14 documents

Keggin heteropolyacid supported on BN and C3N4: Comparison between catalytic and photocatalytic alcohol dehydration

2020

The Keggin heteropolyacid (HPA), H3PW12O40 (PW12) has been supported on commercial boron nitride (BN) and two types of home prepared carbon nitride (C3N4). The supported PW12 was used in the gas-solid (photo)catalytic 2-propanol dehydration reaction to give propene at atmospheric pressure and temperatures in the range 70–120 °C and resulted more active than the pristine PW12. Reaction rate increased by increasing the temperature. Noticeably, the propene formation rate was higher by irradiating the catalytic system. The PW12/BN material resulted more active than PW12/C3N4. The acidity of the HPA cluster accounts for the catalytic role, whereas both the acidity and the redox properties of the…

2-Propanol dehydration Heteropolyacid Keggin Photocatalysis PolyoxometalateMaterials scienceInorganic chemistry02 engineering and technology01 natural sciencesRedoxCatalysisReaction ratePropenechemistry.chemical_compoundPhotocatalysi0103 physical sciences2-Propanol dehydrationGeneral Materials ScienceKegginCarbon nitride010302 applied physicsPolyoxometalateMechanical EngineeringHeteropolyacid021001 nanoscience & nanotechnologyCondensed Matter PhysicsDehydration reactionchemistrySettore CHIM/03 - Chimica Generale E InorganicaMechanics of MaterialsBoron nitridePhotocatalysisSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technology
researchProduct

Improved (photo)catalytic propene hydration in a gas/solid system by using heteropolyacid/oxide composites: Electron paramagnetic resonance, acidity,…

2017

Binary materials composed of the oxides SiO2, TiO2 and N-doped TiO2 and the Keggin heteropolyacid (PW12) were prepared and physicochemically characterized. They were used as catalysts and photocatalysts for the hydration of propene to 2-propanol. The characterization of the samples, particularly the electron paramagnetic resonance (EPR) spectroscopy results and the acidity properties, were useful to explain the key role played by the PW12 in the composite materials in the thermal and photoassisted catalytic processes. The simultaneous pres-ence of heat and UV light improved the activity of PW12 in the thermal process, and the binary materials showed better (photo)catalytic activities than t…

AlkeneOxideHydrationHeteropolyacids02 engineering and technologyAlkenes010402 general chemistryHeterogeneous catalysis01 natural sciencesAlkenes Heterogeneous catalysis Heteropolyacids Hydration Photocatalysis PolyoxometalatesCatalysislaw.inventionPropeneInorganic Chemistrychemistry.chemical_compoundHeterogeneous catalysiPhotocatalysilawReactivity (chemistry)PhotocatalysisComposite materialElectron paramagnetic resonanceHeterogeneous catalysisPolyoxometalatePolyoxometalatesAlkenes; Heterogeneous catalysis; Heteropolyacids; Hydration; Photocatalysis; PolyoxometalatesHeteropolyacid021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)chemistryPhotocatalysisSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technology
researchProduct

Comparison between catalytic and catalytic photo-assisted propene hydration by using supported polyoxometalate.

2012

CATALYSIS PHOTOCATALYSIS PROPENE HIDRATION POLYOXOMETALATESettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

A study on the catalytic perfomances of H3PW12O40 supported on TiO2 and SiO2 for propene hydration in the presence and in the absence of UV light

2012

CATALYSIS PHOTOCATALYSIS PROPENE HIDRATION POLYOXOMETALATESettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Keggin heteropolyacid supported on TiO2 used in gas-solid (photo)catalytic propene hydration and in liquid-solid photocatalytic glycerol dehydration

2017

Abstract (Photo)catalytic propene hydration to 2-propanol and glycerol dehydration to acrolein were carried out by using Keggin heteropolyacids (HPAs) supported on TiO 2 . Binary materials have been prepared by impregnation of H 3 PW 12 O 40 , H 3 PMo 12 O 40 and H 4 SiW 12 O 40 , on TiO 2 Evonik P25. Moreover, a binary material consisting of H 4 SiW 12 O 40 and TiO 2 was prepared via a hydrothermal treatment and tested for the same reactions. All the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy observations (SEM) coupled with energy dispersive X-ray (EDX) measurements, diffuse reflectance spectroscopy (DRS), Raman spectroscopy and Fourier transform …

GlycerolDiffuse reflectance infrared fourier transformScanning electron microscopeInorganic chemistry02 engineering and technology010402 general chemistry01 natural sciencesPropeneCatalysisCatalysiCatalysisPropenechemistry.chemical_compoundsymbols.namesakePhotocatalysiGlycerol; Heteropolyacid; Photocatalysis; Polyoxometalate; Propene; Catalysis; Chemistry (all)Fourier transform infrared spectroscopyPhotocatalysisPolyoxometalateHeteropolyacid propene glycerolAcroleinChemistry (all)General ChemistryHeteropolyacid021001 nanoscience & nanotechnology0104 chemical scienceschemistrysymbolsPhotocatalysisSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologyRaman spectroscopy
researchProduct

Synthesis of New Materials

2013

Hybrid materials catalysis polyoxometalates metal organic frameworks carbon nanoformsSettore CHIM/06 - Chimica Organica
researchProduct

Enhanced (photo)catalytic activity of Wells-Dawson (H6P2W18O62) in comparison to Keggin (H3PW12O40) heteropolyacids for 2-propanol dehydration in gas…

2016

Abstract Catalytic and photocatalytic 2-propanol dehydration to propene at atmospheric pressure and a temperature range of 60–120 °C were carried out in gas-solid regime by using bare and supported Keggin H 3 PW 12 O 40 (PW 12 ) and Wells-Dawson H 6 P 2 W 18 O 62 (P 2 W 18 ) heteropolyacids (HPAs). Binary materials were prepared by impregnation of the HPAs on commercial SiO 2 and TiO 2 . The Wells-Dawson was in any case more active than the Keggin heteropolyacid and the differences were enhanced when the supported samples were used. In particular, Wells-Dawson HPA supported on TiO 2 and under irradiation showed the highest activity. The HPA species played the key role both in the catalytic …

Inorganic chemistry02 engineering and technologyActivation energy010402 general chemistry01 natural sciencesRedoxCatalysisCatalysiCatalysisPropeneReaction ratePropanolchemistry.chemical_compound2-Propanol dehydration Heteropolyacid Keggin Photocatalysis Polyoxometalate Wells-DawsonPhotocatalysiKegginWellsWells-Dawson2-Propanol dehydrationOrganic chemistryKegginPolyoxometalateProcess Chemistry and TechnologyHeteropolyacid021001 nanoscience & nanotechnology0104 chemical scienceschemistryPolyoxometalatePhotocatalysisSettore CHIM/07 - Fondamenti Chimici Delle TecnologieHeteropolyacid Polyoxometalate0210 nano-technologyphotocatalysisApplied Catalysis A: General
researchProduct

Supramolecular Design of Low-dimensional Carbon Nano-hybrids encoding a Polyoxometalate-bis-Pyrene Tweezer

2014

A novel bis-pyrene tweezer anchored on a rigid polyoxometalate scaffold fosters a unique interplay of hydrophobic and electrostatic supramolecular interactions, to shape carbon nanostructures (CNSs)-based extended architectures.

Materials Chemistry2506 Metals and AlloysSurfaces Coatings and FilmCarbon nanotubelaw.inventionCatalysiCoatings and Filmschemistry.chemical_compoundlawhybrid materialsMaterials ChemistryCarbon nanostructures; recognition; hybrid materials; polyoxometalatesMaterials Chemistry2506 Metals and AlloyPyrenesPyreneElectronic Optical and Magnetic MaterialChemistry (all)Metals and AlloysTungsten CompoundsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSurfacesSpectrophotometryPolyoxometalatePyrenerecognitionLangmuir-Schaefer filmsHybrid materialHydrophobic and Hydrophilic InteractionsCarbon nanostructuresMaterials scienceStatic ElectricitySupramolecular chemistrychemistry.chemical_elementNanotechnologyCeramics and CompositeCarbon nanotubeCatalysisNano-ElectronicpolyoxometalatesChemistry (all); Catalysis; Ceramics and Composites; Electronic Optical and Magnetic Materials; Surfaces Coatings and Films; Materials Chemistry2506 Metals and Alloys; 2506Optical and Magnetic Materialscarbon nanotubeHybrid materialPolyoxometalateGeneral ChemistryCarbon nanostructuresCarbonNanostructureschemistryCeramics and Composites2506Supramolecular chemistryCarbon
researchProduct

Heteropolyacid-Based Heterogeneous Photocatalysts for Environmental Application

2015

Polyoxometalates (POMs) are a wide class of discrete nanosized transition metal–oxygen clusters. The synthesis of POMs has received great interest not only because they present intriguing architectures but also because they have potential applications in catalysis, medicine, electrochemistry, materials design or models for self-assembling nanoscale systems. Recently, POMs have also been studied as green and cheap photocatalysts. The potentialities of POMs are attributed to their unique structural features; indeed, POMs are photostable and non-toxic, have oxygen-rich surfaces and excellent redox properties and possess photochemical characteristics similar to those of the semiconductor photoc…

Materials sciencePhotocatalysisNanotechnologySettore CHIM/07 - Fondamenti Chimici Delle TecnologieMaterials designPhotocatalysis heteropolyacid polyoxometalates inorganic clusters semiconductorsCatalysis
researchProduct

Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]−

2016

The encapsulation of functional molecules inside porous coordination polymers (also known as metal-organic frameworks, MOFs) has become of great interest in recent years at the field of multifunctional materials. In this article, we present a study of the effects of size and charge in the anion exchange process of a Gd based MOF, involving molecular species like polyoxometalates (POMs), and [AuCl4]−. This post-synthetic modification has been characterized by IR, EDAX, and single crystal diffraction, which have provided unequivocal evidence of the location of the anion molecules in the framework.

Polymers and PlasticsGadoliniumInorganic chemistryPorous Coordination Polymerschemistry.chemical_element010402 general chemistry01 natural sciencesArticleSingle Crystal DiffractionIonlcsh:QD241-441lcsh:Organic chemistryFunctional importanceanion exchangeMoleculepolyoxometalatesMaterialsIon exchange010405 organic chemistryGeneral ChemistryMOFs; anion exchange; polyoxometalatesMOFs0104 chemical sciencesCrystallographychemistryCristallsCompostos de coordinacióSingle crystalPolymers
researchProduct